

Novel integrated refurbishment solution as a key path towards creating eco-efficient and competitive furnaces

"LEADING THE CHANGE
TOWARDS ECO-EFFICIENT
FURNACES"

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723803

Disclaimer excluding Agency responsibility

Any dissemination of results must indicate that it reflects only the author's view and that the Agency is not responsible for any use that may be made of the information it contains

OUR MOTIVATION

VULKANO project will contribute not only to update the mainly **old-aged European furnaces** but also to create a path to follow in order to ensure a successful design in case of **new furnaces**

SOURCE: Modern Times. 1936

RETROFITING

- Design
- Implement
- Validate an advanced retrofiting solution

2 TYPES OF **FURNACES**

- Melting
- Preheating

MULTIPLE SECTORS

- Steel
- Ceramic
- Aluminium
- Replication in many others

INTEGRATED SOLUTION

- Refractory matrials
- PCM-energy recovery
- Cofiring
- M&C system
- Holistic tool

IMPROVE

- Energy efficiency
- Fuel consumption
- **Environmental** impact
- Competitiveness

Increase of the overall efficiency in two of the main types of industrial furnaces

/ULKANO PROJECT

SPECIFIC OBJECTIVES

20%

INCREASE

in the overall efficiency of the furnaces

27%

SAVING

of fuel consumption

15-40%

REDUCTION

of fossil fuel consumption

DEVELOPMENT

of an optimization methodogology for preheating/melting furnaces

ESTABLISHMENT

of the basis for the market uptake of the Vulkano tool

VULKANO'S PROCEDURE: FROM RESEARCH TO REAL APPLICATION

IMPROVED REFRACTORY MATERIALS

Development and implementation of **new alternative materials** for high-temperature, high-alkali environments capable to operate at higher temperatures or/and for longer periods of time.

THE PROCESS

PCM-BASED ENERGY RECOVERY

PCM has a double purpose acting as a physical filter which is able to recover energy at the same time that smooths fluctuations in the temperature profile working similar to a low-pass filter

CO-FIRING 2ND ENERGY SOURCE

Second energy source from renewable/alternative feedstocks with the aim to substitute the high percentage of natural gas in industrial furnaces.

INTEGRATED CONTROL SYSTEM

The new and improved control system will directly contribute to achieve a more efficient furnace and consequently important fossil fuel savings.

HOLISTIC IN-HOUSE PREDICTIVE TOOL

Decision support tool to optimize the furnace design and its energy and environmental performance, considering the interaction furnaceretrofitting solutions and upstream/downstream processes.

/ULKANO PROJECT

THE PILOTS - TEST IN REAL CONDITIONS

STEEL SECTOR

Location: Slovenia

Project partner: VALJI

Energy consumption: 135 Nm³/hour (Natural Gas)

Type of burners: 3 x 450 kw

Operating temperature: 100 − 400 °C

Solutions to be implemented:

Improved Refractory Materials

PCM-Based Energy Recovery

Co-firing Second Energy Source

Integrated Control System

Holistic In-House Predictive Tool

VULKANO PROJECT

THE PILOTS - TEST IN REAL CONDITIONS

CERAMIC SECTOR

Location: Spain

Project partner: Torrecid

Energy consumption: 1.952 kWh

Type of burners: 2 type of burners. Main burner gas-air or gas-oxygen,

the other one oxygen-gas

Operating temperature: 1500 − 1580 °C

Solutions to be implemented:

Improved Refractory Materials

PCM-Based Energy Recovery

Co-firing Second Energy Source

Integrated Control System

Holistic In-House Predictive Tool

THE PILOTS - REPLICABILITY VALIDATION

ALUMINIUM SECTOR

Location: Turkey

Project partner: ASAS

Energy consumption: 190 Nm³/h (Preheating) / 20,3Nm³/h (melting)

Type of burners: **Preheating**: 3 burners

Melting: 2 North American TwinBed II

Operating temperature: 450 to 500°C for **preheating**

700 to 720°C for melting

Solutions to be evaluated:

Improved Refractory Materials

PCM-Based Energy Recovery

Co-firing Second Energy Source

Integrated Control System

Holistic In-House Predictive Tool

